Chapter 6

FLOOR FAILURE ANALYSIS AT LONGWALL MINING
FACE BASED ON THE MULTIPLE SLIDING BLOCK

MODEL

6.1 INTRODUCTION

This chapter presents an analytical model of floor failure mechanism at a
longwall coal mining face based on a multiple sliding block model. During
longwall mining, stresses and displacements of strata are constantly changing.
High stress concentrations can exceed rock strength and initiate strata fractures
that can, under unfavourable conditions, lead to large floor displacements and

disruption of mining.

Underground observations of the rock floor and computational modelling of
the longwall face, indicate that sub-vertical fractures and bedding plane shear
dominates floor failure. Extensive lateral shearing of weak bedding planes
typically present in the sedimentary strata and sub-vertical fractures that
usually occur at regular intervals during face advance give, the floor strata a

typical blocky appearance.
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Fractures that develop ahead of the longwall face are subject to a ‘secondary’
movement when exposed ahead of the longwall supports. As coal is mined
from above, floor strata moves toward the opening, causing the floor to bend.
If the floor fails, blocks displace in response to floor movement and interact at
the fractured surfaces. The analysis described in this chapter attempts to
explain how stress distribution that develops within broken floors during an
active movement of floor strata leads to high stress concentrations at floor
level. These stress concentrations can exceed rock strength and induce

compression failure of the floor that may interfere with longwall operations.

The multiple sliding block geometry within the floor was developed on the
basis of observations presented in Chapter 3, while the analytical formulations
presented here are supplemented by numerical modelling to verify that the

results are in accordance with numerical predictions.

6.2 PROPOSED MECHANISM FOR THE MULTIPLE SLIDING

BLOCK MODEL

The proposed floor failure mechanism based on a multiple sliding block model
can develop where geological conditions are favourable (Terzaghi, 1967).
These conditions require extensive lateral fracturing that often develop along
the numerous weak bedding planes present in sedimentary strata, and sub-
vertical fractures that normally form in response to changing stress abutments

ahead of the longwall coal face. These failure mechanisms were extensively
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modelled (Gale, 1998) and measured underground using microseismic surveys
(Kelly, 1998).  Lateral and near vertical fracture planes that define stone
blocks within the mining floor will interact during floor heave and can induce

large stresses at the corners of the blocks.

The analytical solution for multiple sliding blocks was specifically designed to
suit floor movement.  The analysis assumes a failed bedding plane deep
within the floor and near vertical fractures forming at regular intervals that
define the geometry of moving blocks (Nemcik, 1998). It also assumes
planar and curved floor inclinations on which the blocks move. Progressive
floor uplift (Peng, 1984) and the reaction forces generated at the face initiate
block movement while continuous floor uplift creates an inclined surface on
which the blocks can slide.  Analytical equations have been derived to
calculate stress magnitudes at the block corners during floor uplift and
describe the force generated between free-standing blocks with an additional

loading of powered supports.

The computational model was formulated to compare analytical solutions with
the numerical results and simulate the interaction of blocks standing on an
inclined floor experiencing uplift. This simulation was repeated for a number
of planar and parabolic floor inclinations including an additional vertical

loading induced by powered supports.
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6.3 POST FAILURE BEHAVIOUR OF FLOOR SPLIT BY MINING

INDUCED FRACTURES

The following analysis assumes that a single bedding plane fails below the
floor and that vertical fractures develop ahead of the longwall face at regular
intervals forming blocks, as shown in Figure 6.1.  Progressive longwall
mining causes continuous floor uplift at the longwall face which initiate an

active slip of blocks along the sub-vertical fractures and lateral slip along the

failed bedding plane.

The analytical approach and numerical modelling are presented to explain how
continuous floor deformation and actively sliding blocks can induce lateral
stress concentrations at the floor level. Block behaviour varies according to
geometry and angle of friction along the slip surfaces. In most cases, near
vertical fracture surfaces dip steeply towards the goaf so vertical surfaces were

assumed to simplify calculation of forces at the block sides.

160



Floor
failure

ening
of fractures

Figure 6.1 Floor fractures and floor uplift at longwall face

6.4 ACTIVE SLIP OF BLOCKS RESTING ON AN INCLINED

BEDDING PLANE

In response to longwall mining, continuous floor uplift is generally
experienced as illustrated in Figure 6.2 while Figure 6.3 describes forces of
actively slipping blocks standing on an inclined surface subject to:

¢ weight of block (W)

e lateral interaction force (Q)
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e frictional force at block sides (Q tand,) where ¢y is the angle of friction
along vertical fractures, and

e reaction force at the bottom of each block consisting of normal force
(N) and shear force (N tandy, ), where ¢y, is the angle of friction along

the horizontal bedding.
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Figure 6.2  Schematic representation of block movement in floor

Note that the blocks move upwards, that the shear forces along the sides of the
blocks are also in the direction of movement and the friction along vertical
fractures increases with the normal force N; at the base of each block. The

ability to slip either along the vertical plane or the horizontal bedding appears
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to be related to floor shape, block geometry and the angle of friction along the

slip surfaces.

Three possible cases of block behaviour are shown in Figure 6.4, with each

case being described and analysed in the following pages.
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6.4.1 Slip Along Fracture Boundaries, No Block Rotation

This model (Figure 6.4a) assumes that movement occurs along both the
vertical and horizontal fractures simultaneously. The analytical solution of

block movement is presented below:

A free body diagram presented in Figure 6.3 shows the forces acting upon a
single block. The angle of friction ¢, along the failed bedding plane will
depend on the material properties of geological discontinuity along which the
failure is developed. For the blocks to slip along the failed bedding plane, the
force F; overcoming shear resistance S; must exceed the Mohr-Coulomb
criterion (Brady and Brown, 1985):

Fs > Sy, and

Sh = Nitandy,

where, Sp = shear resistance along failed bedding plane

N;

I

normal force to the bedding plane

¢n = angle of friction along failed horizontal bedding

The following analytical procedure shows how to calculate the maximum
lateral force Q concentrated at the point of contact at the top corner of each

block resting on an inclined surface.

In order to derive an equation to evaluate Q forces at block comners, the first

trial assumes that floor surface inclination  is planar, includes self-weight of
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the floor and the additional surface load P. Consider the “block;* at the edge

of the boundary as shown in Figure 6.4.

From the free body diagram in Figure 6.3 it can be observed that the normal

force to the bedding plane at the block, is given by:

N, =Wcosa + tang, Q,cosa + sinaQQ, (6.1)

The normal force to the bedding plane N, at the block; is:

N, =W,cosa +tang, (Q, — Q, )cosa + sina(Q, -Q,) (6.2)

Similarly it can be derived that the normal force at block; is:

N, =W,cosa + tang, (Q, - Q,, Jcosar + sina(Q; - Q) (6.3)

The lateral force Q, is equal to:

Q, = N,(sina + tang, cosar) (6.4)

Substituting Equation (6.1) for N; leads to:

Q, = (W,cosa + tang,cosaQ, +sinaQ, )(sina + tang, cosar)
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Solving for Q,

e, W,cosa(sina + tang, cosa)
' 1-(tang,cosa + sina)(sina + tang, cosa)

Rearranging gives:

pe W, cosa
(sine + tang, cosa) ™ — (sina + tang,cosa)

Q

The lateral force Q; is equal to:

Q, = (N, + N, X(sina + tang, cosa)

Substituting Equations (6.1) and (6.2) for N; and N, gives:

Q, = (W,cosa + tang,cosaQ, +sinaQ, + W, cosa + tang, cosaQ, —
— tang, cosaQQ, +sinaQ, —sinaQ, )(sina + tan ¢, cosa)

Simplifying the above leads to:

Q, = (W,cosa + W, cosa + tang, cosaQ, +sinaQ, )(sina + tang, cosa)

Solving for Q, gives:

(6.5)

(6.6)
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D (W, +W,)cosa(sina + tan g, cosa)
2 1-(sina + tang, cosa)(sina + tang, cosr)

or

(W, +W,)cosa

2= T (6.7)
(sina +tang, cosa)™ — (sina + tang, cosa)
Further it can be proven that for any force Q,:
> W, cosa
L= S (6.8)
(sina +tang, cosa)™ —(sina + tang, cosa)
For the blocks of the same weight, the equation is linear and becomes
= nh cose (69)
(sina +tang, cosa)™ —(sina + tang, cosa)
Expanding Equation (6.9) gives:
& nW(sina cosa + tang, cos’ a) 6.10)
" 1-tang, sinacosa +sin® o — tang, tang, cos’ @ + tang, sinacoser

If the inclined slope on which the blocks slide is not planar and

oG # Q-] # Qg #........ g,
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Q force can be calculated as shown below:

= Hikos, (6.11)
: (sina, +tang, cosa, )™ - (sing, +tang,cosa, ) '
The Q, is dependent on Q, and becomes:
i Wycosa, —Q,{(sina, +tang, cosa, ) - (sina, + tang, cosa,)™) 6.12)
i (sina, +tang, cosa, )" —(sina, + tang,cosa, )
and for any force Qy, it can be proven that:
Do i Wicosa, —Q,,{(sine, + tang, cosa, ) - (sina, + tang,cosaz, )™} ©6.13)

= (sing; +tang, cose,)™ - (sina, + tang,cosa, )

6.4.2 Height of the Lateral Force Centroid Q;

Assuming that W, =W, =W; =Wand o, =a, = a3 =....... o

Taking moments about the normal force interaction point N; of the first

block;:
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%—th, +LQ,tang, =0 (6.14)
Solving for the height of centroid h, gives:

WL
h, =—+1Ltan 6.15
=50 *Liand, (6.15)

Substituting Equation (6.5) for Q, gives:

p = LAGina +tang, cosa)™ - (sina + tang, cosa)}
=

+Ltang. (6.16)
2cosa

Similarly taking moments about the normal force point N, of the block,:

WL
5 ~Qh +LQ,tang, —Q,h, =0 (6.17)
Solving for h,:

_ WL Q
hy = = +Ltang, +h, . (6.18)

Substituting Equation (6.5), (6.7) and (6.15) for Q,, Q, and h, leads to:

e L{(sina + tang, cosa) ™ — (sina + tang, cosa)} " 3Ltang,
2 2cosa 2

(6.19)
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Similarly it can be proven that:

_ L{(sina + tang, cosar) ' - (sina + tang, cosa)} & (i+1)Ltang,
2cosa 2

h

i

(6.20)

Equation (6.20) indicates that as the distance from the block, increases (term
i+1), the height of the centroid Q; increases until it coincides with the top

corner of the block, where h; =H;.

The condition of the block rotation can be described as:
H - “N.H L N.L H
Qm (hm o 7) & Ttan¢h < (Qm e Q,)'z— tan¢v it T st Qi(hi i ?) (6-2] )

If the left hand side of the Equation (6.21) is smaller than the right hand side,
the block will rotate to the position where the base is in full contact with the
bedding plane. Equation (6.21) indicates that if the angle of friction along the
bedding plane decreases while the friction angle along the vertical fractures
increases, the chance of block rotation will increase. Reducing the

geometrical ratio H/L would also increase the likelihood of block rotation.
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6.4.3 Additional Load induced by Powered Supports

An additional load P; induced on the block; by the powered supports modifies

the above equations as given below where Equation (6.3) is modified to

N; = (Wi+Pj)cosa + tandycosa (Qi-Q; 1)+ sina(Qi-Q;.y) (6.22)

where, P; = Load of Powered support on block;

Equation (6.9), (6.13) and (6.20) now become:

i n(W + P)cosa (6.23)

° " (sina+ tang, cosa)™ — (sina + tang, cosx)

B z": (W, +P,)cose, -~ Q,,{(tang, cosa, +sina,) - (sine, + tang, cosa,)™'}
e (sing; +tang, cose,)™ — (sing, + tang,cosa, )

(6.24)

5 L(P + E‘ ){(sinc + tang, cosar) ™ —(sine + tang, cosa)} _(+DLtang,

: (P, +W,)2cosa 2

(6.25)

Equation 6.25 indicates that the Q forces are largest at the longwall face and

the P force induced by powered supports increases the Q forces significantly.
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6.4.4 Rotation of Block with Slip along the Bedding Plane

The Equation (6.20) indicates that the centroid h; of the lateral force Qi is
sensitive to the friction angle along the vertical fractures, and the distance

towards the face. The friction angle along the vertical fractures ¢y is typically

~35° and possibly higher due to an uneven fracture surface (angle 1). Under
the conditions described by Equation (6.23), rotation will occur and the base
of the block will move to the position shown earlier in Figure 6.4(b). The
analytical solution and the computational model indicate that if block rotation
occurs during active block movement, normal stress at the base is, in most
cases, concentrated close to the uphill corner of each block.  For block
rotation, the lateral force Q can be calculated as described in the following

section.

6.4.5 Rotation of Block with No Slip along Vertical Fractures

For planar bedding inclination o (Figure 6.4b), calculations of the Q, force at
the coal face can be determined as follows. The Q forces are taken as being
parallel to the bedding plane. Taking moments about the face point where the
Q, force is calculated and considering all “n” blocks at once, the sum of forces

is equal to zero. Therefore,
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i{(W,+P,)(n—i+1/2)L+N,.(H tang, —1)}=0 (6.26)

i=]

where, L = width of the blocks

H = height of the blocks

Solving for the sum of normal forces N; :

n n

ZN,.=Z{(l—Htan¢,,)—(14/;+}1)(n—i+l/2)L} (6.27)

i=

i=1

Finally, the Q, force can be calculated as shown below:

0,= iNi tang, (6.28)

6.4.6 Rotation of Block with No Slip along Vertical Fractures

standing on a Curved Slope

For curved bedding inclination as shown in Figure 6.4c, Q forces were taken
as being parallel to the bedding plane. By taking moments about the top left
corner of each block where the Q forces are transferred through, the normal

force at the base of block; is equal to:
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v = OSLOV +P)

29
o (6.29)

Summing the forces parallel to the bedding plane, the Q, force can be

calculated as:

0, =N, tang, (6.30a)
Substituting for N ; :

0 = %ﬁlm [ (6.30b)
Similarly for block:

o 0.5L(W, + P,)-LV, cos(a, — ;) 6.31)

L-Htang,

where, V) is the force along the vertical fracture of Block; and is equal to:

Vi =N;-(W;+Py) (6.32)

Summing the forces parallel to the bedding plane, the Q, force can be

calculated as:

0, = N,tang, +Q, cos(a, —a,) (6.33)
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Substituting for N, :

0. £ =
P SL(W, +P,)-LV, cos(a, —,) tang, + 0, cos(@, - ) (6.34)
. L - H tang,

[t can be derived that for any term N;:

N O-SL(VV.' * Pi)'LVi-l cos(ai —ai-l) (6.35)
' L-Htang, -

V.1 s the frictional force along the vertical fracture on the right side of block;

and must be smaller than Q, tang,. Any frictional force along the vertical

fracture can be iterated by:

V.=V, +N,-W,-P, (6.36)

The general Q force can be evaluated as:

J, =N, tang, +Q,, cos(a, —a, ) or (6.37)

o 0.5L(W, +P,)-LV,, cos(a, —a,_,) tang, +0,., cos(a, - a,.,) (6.38)
L-Htang,

176



6.4.7 Rotation of Block with Slip along Vertical Fractures
For certain conditions along the non-planar bedding inclination o as shown in
Figure 6.4 (c), the slip along the vertical fractures will occur. In this case, the

Q forces are taken as being parallel to the bedding plane.

Summing the forces perpendicular to the bedding plane, the normal force to

the bedding at Block, can be calculated by:

N; =(W;+P)cosa,+ Q tand, (6.39)

Summing the forces parallel to the bedding plane, the Q, force can be

evaluated to give:

Q= Njtand, + (W, +Py)sina; (6.40)

Substituting for N; and rearranging gives:

_ (W, +P,)(sine, + tang,cosa, )

6.41
2 1-tang, tang, R
Similarly for block;:

N, = (W2+P2)cosa2+ (Qz-Ql)tamb,, (642)
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Summing the forces parallel to the bedding plane, the Q, force can be

calculated as shown below:
Q2= Qi+ Naotandy, + (Wy+P,)sina,
Substituting for N, and rearranging gives:

W, +P, )(sina, + tang,cosa,)
Qz =Q] +( 2 2)( 2 ¢h 2
1-tang, tang,

For general forces Ni and Q,, it can be proven that:

Ni = (WitPi)cosait (Qi-Q;.1)tang,

and

as z (W, +P,)(sine, + tang, cosa;, )
e 1-tang, tang,

(6.43)

(6.44)

(6.45)

(6.46)

The computational codes to solve Q force Equations derived in Section 6.4 for

various slope shapes are given in the Appendix, Section A2.
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6.5 COMPUTATIONAL MODEL USING UDEC

The model was used to study interactive forces between the block surfaces and
to compare them with the forces derived when using analytical equations.
Using the Universal Distinct Element Code UDEC (Itasca, 1993), the model
was constructed to represent a fractured floor consisting of interacting blocks
sliding on an inclined bedding plane. The free standing blocks used to model
the fractured floor were 1m wide 2m high, while the base on which the blocks
were sliding represented a failed horizontal bedding plane. To simulate an
increase in floor elevation, the bedding was moved upwards at a
predetermined rate.  The floor was either a planar slope or curved into a
parabolic shape as shown earlier in Figure 6.4. The blocks were gravity
loaded and a vertical load of 650 tonne was applied onto the 4™, 5 and 6%
block from the face, to simulate the pressure induced by powered supports
onto the floor. The “face block” shown on the left hand side of Figure 6.2
was fixed, to provide reaction forces to the moving blocks. The properties of
fractured surfaces used in the numerical model are given in Table 6.1
(Nguyen, 1981), and the interacting forces between the block surfaces were
studied. The computational code used here is given in the Appendix, Section

A3.
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Table 6.1 Rock and Fracture Properties used in UDEC Model

(Nguyen, 1981)
Bulk Shear Normal Shear Angle of Cohesion
Modulus Modulus Stiffness Stiffness Friction
along
(GPa) (GPa) (GPa)/m (GPa)/m Fractures (MPa)
Block
Properties 9 6.7
Bedding |
Fractures 9 6.7 15-35° 0
Vertical
Fractures 9 6.7 15-45° 0

6.6 COMPARISON OF ANALYTICAL AND NUMERICAL

SOLUTIONS

The possible cases of sliding models described earlier have been numerically
modelled using UDEC, as shown in Figure 6.4. The analytical predictions for
“Q-forces” represented by Equations 6.23, 6.24, 6.28, 6.38 and 6.46 are

compared with UDEC numerical results for block rotation and no rotation.
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6.6.1 Moving Blocks standing on Inclined Planar Bedding Surface

Moving blocks modelled on the inclined planar bedding surface experienced
slip along the vertical and horizontal fractures, without rotation. Calculated
and modelled Q forces are compared in Figure 6.5 where, for low angles of
friction along the fractures, the modelled Q force approximates the calculated
force from Equation 6.23 that describes the “no rotation” movement. When
angles of friction were greater than 25° the interacting Q force appears to
follow a lower path than the calculated force of non-rotating blocks.
Reduction of the expected Q force in the model reflects the complex
movement of all six modelled blocks, where some blocks were displaced
along the fractures only, whilst others were rotated slightly.  Magnified
displacements from the UDEC model of blocks with no rotation are shown in
Figure 6.4a, while slip along the bedding plane with no vertical slip, is shown
in Figure 6.4b.  Block movement conditions modelled by UDEC were

magnified for clarity.
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Figure 6.5 Interacting Q force between floor blocks
standing on moving planar bedding plane

6.6.2 Moving Blocks standing on Curved Bedding Surface

When modelling the parabolic inclination of floor taking the shape of curve y

= x*/400, the blocks were approximating the rotations shown in Figure 6.4(c).

The Q forces obtained from the model were compared to the forces derived by

Equations 6.24, 6.38 and 6.46, and are shown in Figure 6.6.
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Figure 6.6 Interacting Q force between floor blocks standing on
moving curved bedding plane of shape x*/400

The above plots indicate that for the described geometry the modelled Q

forces were slightly smaller than calculated Q forces.

When the floor was inclined in the shape of y = x/200, upward movement of
the modelled floor induced block displacement similar to the previous case.
The magnified UDEC displacements shown in Figure 6.4¢ indicated that the

blocks rotated and slipped along the bedding plane but did not slip along the
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vertical fractures. The exceptions were blocks 1 and 2, which were loaded by
powered supports. The interacting Q forces modelled by UDEC were similar
to all equations for lower bedding friction.  For higher bedding friction,
modelled results were similar to Equation 6.38 for block rotation with no

vertical slip. The results are compared in Figure 6.7.

For a planar floor, UDEC predictions are close to the condition of ‘no block
rotation’ with slip along all fractures, but for a parabolic floor, curvature

varied block behaviour, and slip along the bedding plane definitely occurred.

6.6.3 Magnitudes of Q force

The Q force magnitude acting at the block corners increased with the angle of
friction along the bedding plane, and also increased with the angle of friction
along the vertical fractures in all cases where movement along these fractures
occurred.  Figure 6.5 shown that for a given geometry and a low angle of
friction equal to 10°, the Q force was approximately 1000kN (100 tonnes) for
all calculated and modelled cases. As the angle of friction along the bedding
plane increased to 30°, the modelled Q force in the planar floor model varied
from 3400kN to 4300kN (340-430 tonnes) depending on the angle of friction
along the vertical fractures. When compared to the analytical equations the Q
force varied from 2600kN (260 tonnes) for a ‘block rotation’ condition to a

maximum of 6100kN (610 tonnes) for a ‘no block rotation’ condition. As
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Figure 6.7 Interacting Q force between floor blocks standing on
moving curved bedding plane of shape x*/200

expected, Q forces for the parabolic floor inclination were independent of the
friction angle along the vertical fractures, where slip did not occur. For the
30° of friction angle of along the bedding plane, calculated Q forces on the

curved plane varied from approximately 3000kN to 4600kN (300-460 tonnes),
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while the more complex block movement in the model indicated Q forces of

approximately 2600kN to 2900kN (260-290 tonnes).
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Figure 6.8 UDEC model showing concentrations of lateral
stress at floor level
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6.7  STRESS AT FLOOR LEVEL

Block interactions occur typically at floor level and as expected, lateral
stresses concentrate in the upper edges of the blocks at floor level. Typical
concentrations of lateral stress at floor level modelled by UDEC are shown in

Figure 6.8.

Calculating the probable stress at floor level is required to estimate the safety
factor of the floor. An equation to estimate maximum stress at floor level was
derived using the geometry described in Figure 6.9. Contact area at the block
corners is usually small, and depends on block movement, geometry, rock

stiffness and the magnitude of Q force.

From the geometry shown in Figure 6.9, it can be shown that the contact area

A at the block corner can be estimated by:

2617
- EQ, (6.51)
Y.

where: b = width of the block along the face equal of the width of the powered

support,
L = width of the block at perpendicular to the face,
Q = interacting force at block corner,
y = floor lift, and

E = Young’s modulus
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Figure 6.9 Area of contact between blocks in the floor

Calculations of the contact area between the blocks using Equation (6.51) are

within 10% of the contact area observed in the UDEC model.

The average stress at the contact area can be calculated using:

abs Slalied e, (6.52)
peaV i T
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From the geometry shown in Figure 6.9, maximum stress develops at the top

of the block (floor level) and is equal to:

2)E
& o . = f L}Q, (6.53)

Even though the planar slope of the floor was included in the study, the non-

planar increase in floor elevation would represent a more realistic behaviour
(Peng, 1984). Using Equation (6.53), maximum stress Gmax Was calculated at

the face for various floor shapes, bedding friction and powered support loads.

These were:

Floor curvature: y=x2/400, y=x*/200, y=x*/100 and y=x*/50
Friction angle of floor 10°:-15°.202,:25%:30%and 35°

Powered support load 400, 500, 600, 700, 800 and 900 tonnes

The increase in slope, bedding friction and powered support loads appeared to
have a significant influence on the magnitude of calculated stress Gmax. A
reduction of contact area at the block corners and an increase of the Q force

was experienced when floor curvature changed from y = x*/400 to y = x*/50.

The calculated floor stress levels presented in Figures 6.10 and 6.11 indicate a
wide variety of possible stresses at floor level. For friction angles along the
bedding plane varying from 10° to 15°, and for low floor curvature (y =

x*/400) maximum floor stress varied from approximately 6 to 10 MPa
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Figure 6.10  Calculated maximum lateral stress at floor
level for y=x*/50 and y=x*/100

depending on the load below the powered supports.  For steeper floor
curvature approaching y = x%/50 and larger angles of friction ($=30° to 35%);
stress magnitudes increased dramatically, ranging between 32 and 50 MPa.
gth of

These stress magnitudes are well within the range of the insitu stren

rocks typically found in coal mine floors (Karabin, 1999).
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Figure 6.11  Calculated maximum lateral stress at floor level
for y=x*/200 and y=x*/400
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6.8 SUMMARY

The effect of moving blocks along fractured interfaces and its influence on
stress distribution in the floor was studied.  The theoretical solutions for
interacting Q forces acting at the corners of the moving blocks compared well
with the numerical model based on UDEC. From the three types of proposed
block motions, block rotation appeared to dominate the movement of the non-
planar floor shape in the model. The “no rotation but slip along all fractured
surfaces” condition is usually restricted to blocks with high height to width
ratios but for severely inclined floor surfaces, complex block movement can

occur with all proposed block motions.

Even though the multiple block analyses presented here are similar to some
limit equilibrium methods used in slope engineering (Hoek & Bray, 1981), the
applications of the writers model are unique for longwall mining conditions.
Results from the analytical and numerical model show that high lateral
stresses can exist at the top of each moving block, and the magnitudes of
interacting forces can be large enough to induce floor failure. The analytical
solutions indicate that calculated interaction forces between the blocks
increased with the distance towards the face, and as expected, stress transfer
locations are usually at the unconfined floor level. The study indicated that
maximum stresses at floor level increased mainly with (i) an increase in
longwall support loads, (ii) the angle of friction along the bedding plane on

which the blocks slide, and (iii) an increase in floor curvature.
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The calculated and modelled contact area at the tip of each block appeared
relatively small, allowing interacting lateral stress to exceed rock strength and
induce rock failure at floor level. The block movement mechanism indicates
that if floor failure occurs, it will begin at the surface and propagate lower
down. The theoretical equations formulated in this study would give the
practising mining or geotechnical engineer a useful tool for predicting floor
stability at the longwall face. Even though the mechanism for moving blocks
in the floor and the derived equations for interacting forces describe a new
approach to analysing stress distribution in the immediate floor, further work

is needed to fully assess the applications of this method.
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