Introduction

- Reason for Surface to inseam Project
- Outcomes
- Operational issues
- Future opportunities
Reason for Surface to Inseam

- Time to drain new area.
- Access to drain gateroads
- Longwall float / development lead time and business risk
- Opportunity cost
Stage 1 - STG1 starting 14c/t
(2*800m flank holes)
(2*1200m flank holes)

Stage 2 - SMG1 starting 10c/t
(4*800m flank holes)
(2*1000m flank holes)

Stage 3 - SMG2 starting 18c/t
(4*800m flank holes)
(2*1000m flank holes)
Oaky Creek Coal Surface to inseam Presentation - Revised Inseam and Surface to inseam Plan
Oaky Creek Coal Surface to inseam Presentation - Outcomes

- Regained 2 months float in STG1 and SMG1
- Confirmed surface to inseam could be performed by two drilling companies and assessed performance for future projects
- Confirmed geological data
- Gained permeability and hole flow knowledge
- Gave OCC options for future Gas Drainage
- Reduce gas reservoir by half in 4 months
Oaky Creek Coal Surface to Inseam Presentation - schematic

- Surface to In-seam hole
- Vertical Well
- Gas and water discharge
- German Creek Coal Seam
- Sump
Oaky Creek Coal Surface to inseam Presentation - Slant and Vertical wells
Operational Issues

- Site preparation
- Availability of infrastructure
- Surface water management
- Intensity of monitoring required
- Determination of water level in hole
- Control of Gas Desorption.
- Interaction of inseam holes with Surface to Inseam holes
Water Containment (during drilling)
Salty Water Containment
- Surge Dam (during well production)
Water Containment (during well production)
Water Containment (during well production)
Utilisation of gas to power pumps or other OCC ancillary equipment (ie dewatering pumps in pits)

Telemetric monitoring

Piezometer instead of echometer

Increased drilling distance achievable

Different drilling patterns available

Geophysical logging of hole
Future holes