Borehole permeability damage and its impacts on gas drainage

28 June 2007

Luke Connell & Rob Jeffrey
CSIRO Petroleum, Clayton
Outline

• What is formation damage?
• Damage mechanisms in coal
• Evidence of damage
• Investigations into damage mechanisms
• Conclusions
Acknowledgement

• This work is supported by ACARP under project C14038
Background

• **Borehole permeability damage**
 - A region within the formation in proximity to a borehole with a reduced or enhanced permeability
 - Also know as borehole skin

Diagram:
- Positive skin factor – reduction in permeability
- Negative skin factor – increase in permeability
- Skin acting to reduce flow
- Radial distance
- Reservoir pressure
Background

• Positive skin acts to impede flow into the borehole
 • Inhibit gas and water drainage
• A common problem with wells in petroleum engineering
• Poorly understood in coal
• Project objectives
 • Review the potential role of borehole skin in coal and identify ways to manage it
Hypothetical example – SIMED simulation of gas drainage rate with respect to skin factor

Gas Production Rate

Cumulative Gas Produced

Time (Years)

Time (Years)

Gas Rate (MScf/day)

Cumulative Gas Produced (MMScf)

Skin = 0

Skin = 0

0

0

0

5

5

10

10
Causes of formation damage

• **A lot of experience with wells in non-coal formations**
 • Common mechanisms with oil and gas production
 • Drilling fluid/mud interaction with the formation, clogging the pore system and lowering perm
 • Migration of drilling fines into the formation and clogging of pore system (overbalanced drilling)
 • Mineralization
 • Groundwater saturated in dissolved minerals
 • Precipitation on the borehole wall/near borehole region
 • Relative permeability effects
 • Gas blocking
 • Presence of gas in cleat system lowers water relative permeability and thus rate of water outflow
 • Water blocking
 • Water blocks gas flow

• **Little information available on coal**

• **Other possibilities – important for coal?**
 • Possible fines migration during production and clogging of cleat system near borehole
 • fines production during gas desorption?
 • Lack of information on this
 • Permeability that is stress sensitive
 • Clearly demonstrated in a wide range of studies
 • Will mean a permeability reduction towards gas drainage boreholes – but unknown effects
Mechanisms for formation damage

- **Drilling induced**
 - Drilling fines - difficulties in cleaning out
 - Drilling fluids – muds

- **Drainage induced**
 - mineralisation
Evidence for skin in gas drainage boreholes

• **Jeffrey and Meaney 1997**
 • Combination of production and well tests at Dartbrook
 • Vertical well – significant skin (~8)

• **Jeffrey et al. 2005**
 • Skin estimated from gas drainage pre and post fracture treatment of underground drilled horizontal well
 • skin (~20)

• **Other unpublished modelling work (personnel communication)**
 • Large skins experienced for some MRD holes in coal (extreme case surface to inseam ~60-80 – determined from reservoir simulation history matching)

• **Recent West Cliff well testing work (skin -0.8 – 0.9) (Wold, Connell and Choi, 2007)**
 • Seam drained of gas and water
 • skin determined by injection test (water injected into borehole)
 • small effective stress gradient around well; i.e. injection pressure
 • Test should provide a good measure of skin because of the use of monitoring well data from injection test in analysis
Evidence for formation damage in coal

- **Dartbrook – Jeffrey et al. (2005)**
 - Low permeability coals high CO2 content
 - under gas drainage using inseam boreholes - sand propped hydraulic fractures were placed at regular intervals
 - Induced fracture bypassed a near-borehole skin
 - Gas rate increased x100
 - Large skin factor of ~20 determined through history matching using SIMED
Evidence for formation damage in coals

• **A review was conducted of well test reports**
 - Well tests to determine permeability often also report the skin factor
 - A large number of well tests as part of coal seam methane resource evaluation have been conducted and are publicly available
 - NSW DIGS database
 - QLD QDEX database
 - These are (almost all) single well tests in vertical wells involving saturated water flow (injection-falloff tests)
 - May not reflect skin during gas drainage
 - Will indicate skin as a result of drilling or water flow related processes
 - Involve relatively small pressure gradients (compared to gas drainage)
 - 153 well tests determined the skin factor
Evidence of formation damage in coal

Probability distribution of skin factor

Cumulative pdf

Skin factor

Detrimental to drainage

Summary

median
Qld -1.72
NSW Prod -0.09
NSW Inj -0.79

Injection tests NSW
Production tests NSW
Injection tests QLD
Well test results

Skin vs perm

Skin factor vs Permeability (md)
Mineralisation

- **For many coals**
 - Considerable evidence of mineralisation in cleats & fractures
 - Potential for precipitation to occur within gas drainage boreholes
 - In regions where the groundwater is saturated with minerals small evaporative losses lead to precipitation
 - Water chemistry changes brought on by pressure change can lead to precipitation of some minerals. CO2 comes out of solution rapidly with a drop in pressure.
 - Minerals could act to impede gas/water flow into the well

Minerals collected from borehole
Gas blocking

- **The rate of combined flow of water and gas is determined by their relative permeabilities**
 - Initially the seam is saturated with water
 - Lowering the pore pressure leads to gas desorption – to start with – the region closest to the well
 - The presence of gas lowers the flow rate of water
 - Water within the seam is then “held-up” and gas drainage delayed

![Graph showing water and gas relative permeability vs water saturation](image)
Stress sensitivity of coal permeability

- Coal permeability varies with effective stress

- Lowering the pore pressure to drain coals leads to increased effective stress towards the borehole.
Role of permeability vs effective stress in gas drainage

- Simulations of gas drainage using SIMED
 - Using permeability vs effective stress relationships established from field work
 - Investigations into the variation with depth
- If the perm vs stress behaviour is not correctly accounted for it would be characterised as skin in the analyses
Relationship Between Gas Rate (m3/day) and Time (day) at Different Depths
With the Effect of Stress
Coal fines migration during drilling

- Fines produced during drilling are forced into the surrounding coal clogging cleats
- **Overbalanced drilling**
 - fluid pressure in the borehole > formation
- **Underground inseam boreholes**
 - Are drilled open to atmosphere, so underbalanced
 - However water is supplied at pressure to the drill motor
 - Water pressure should be < formation pressure
- **Medium Radius Horizontal**
 - Potential for overbalanced conditions to develop
 - A key issue if these boreholes are to be effective for gas drainage
 - Most drilling companies have become aware of this – use techniques that lower the borehole pressure
 - More difficult to clean out
 - However the skin factors can only be determined through history matching – needs careful simulation work – data is very limited
 - We are not able to carry out well tests on MRD holes
Conclusions

- Positive borehole skin will act to impede gas drainage; increasing drainage lead times etc
- There is evidence that skin can (sometimes) be significant in coal drainage boreholes
- A review of Injection-falloff testing of vertical boreholes for NSW & Qld found 10-15% had skin factors >10 (peak gas rate for a skin factor of 10 reduced around 50%)
- Information on inseam boreholes and MRD holes is very limited
- Overbalanced drilling conditions will act to increase skin through coal fines migration
 - Pressure in MRD holes during drilling needs to be carefully monitored along the length of the hole
- For inseam holes the water pressure at the drill motor needs to be considered
- Need to characterise the skin in MRD holes and relate to drilling practices