Concurrent *In-situ* Measurement of Flow Capacity & Gas Content

Peter Ramsay
pramsay@welldog.com
www.welldog.com
Agenda

• Summary of Field Trial
• Equipment used for trial
• Mixed gas measurement
• Field trail results
• Conclusions
Field Trial

• Real Application
 – Measuring flow capacity
 – Measuring gas content
 – Testing in a PQ borehole
Field Trial

• **Real Application**
 – Measuring flow capacity
 – Measuring gas content
 – Testing in a PQ borehole

• **Real Client**
 – Large mining company
 – Queensland, Australia
Field Trial

• **Real Application**
 - Measuring flow capacity
 - Measuring gas content
 - Testing in a PQ borehole

• **Real Client**
 - Large mining company
 - Queensland, Australia

• **Real Results**
 - Blind trial
Technical Service #1 – Drill Stem Test

- DST technology established and widely used to measure flow capacity and other seam characteristics
- Straddle packers used to isolate the test interval
- System design allows integration of real time surface read out of coal seam pressure using wireless E-M telemetry
Technical Service #2 – Raman Spectroscopy Gas Testing

- Raman spectroscopy used to detect and measure trace gases dissolved in coal seam fluids
Gas Testing Mixed Gases

- RS has the ability to detect the concentration of different gases like CO2
- During dewatering, bicarbonate can revert to CO2 resulting in a higher % of CO2
- Create a mixed gas isotherm based on borehole concentrations
Technologies - RS

• Result are related to gas content in coal seam
 – Gas concentration → gas partial pressure = critical desorption pressure (CDP) → gas content G_c

• For example:

\[
\begin{align*}
[\text{CH}_4] & \quad P(\text{CH}_4) = \text{CDP} & \Gamma(\text{CH}_4)
\end{align*}
\]

• An adsorption isotherm is needed to calculate gas content from CDP
Pressure, temperature and conductivity used to calculate solubility relationship for Henry’s constant

Total Dissolved Solids indicates self-consistent fluid

Methane log shows under-saturated fluid, maximum gas content has been measured
Derivation of Gas Content

Formula:
\[y = 0.0122x + 1.2124 \]

\[R^2 = 0.9908 \]

<table>
<thead>
<tr>
<th>Seam no.</th>
<th>Average density (g/cc)</th>
<th>Average ash (%)</th>
<th>V(L)—DAF (psi)</th>
<th>Synthetic V(L)—AR (psi)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seam 1</td>
<td>1.57</td>
<td>29</td>
<td>27.00</td>
<td>19.21</td>
</tr>
<tr>
<td>Seam 2</td>
<td>1.63</td>
<td>34</td>
<td>29.74</td>
<td>19.65</td>
</tr>
<tr>
<td>Seam 3</td>
<td>1.60</td>
<td>23</td>
<td>32.57</td>
<td>25.17</td>
</tr>
<tr>
<td>Seam 4</td>
<td>1.62</td>
<td>33</td>
<td>29.84</td>
<td>19.93</td>
</tr>
</tbody>
</table>
Test Results

Water column supported by P*

DST no. | Interval name | Interval (m BS) | Flow capacity (mD-ft) | Skin | Pressure (psia) | CDP (psia) | Std. Dev (%) spectra (no.) | V_L (m^3/ton) / L_p (psia) | G_C (m^3/ton) | G_S (m^3/ton) | G_C/G_S (%) | Drainage dP (psi) | P_abandon (psia) | Recovery (m^3/ton) | R.F. (%)
--- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | --- | ---
1 | Seam 1 | 114.6–118.2 | 960 | 3.8 | 50 | 20 | 12.5/26 | 23.1/269.0 | 1.5 | 5.49 | 27 | 70 | 10 | 0.72 | 48

x.xx m^3/ton gas content
xxx psia CDP
xxx psia P*
xxx mD.ft kh
xxx psi required drawdown

x.xx m^3/ton gas content
xxx psia CDP
xxx psia P*
xxx mD.ft kh
xxx psi required drawdown

x.xx m^3/ton gas content
xxx psia CDP
xxx psia P*
xxx mD.ft kh
xxx psi required drawdown

WellDog
Your new best friend

Public release 12
WellDog vs Traditional Gas Content

Blind Trial Results

WellDog Gas Content vs Traditional Method Gas Content
Conclusions

✓ Field proven
 – Successful integration
Conclusions

✓ Field proven
 – Successful integration

✓ Safe
 – Operations conducted safely
Conclusions

✓ Field proven
 – Successful integration
✓ Safe
 – Operations conducted safely
✓ Accurate
 – RS gas content matched core gas content
Conclusions

✓ Field proven
 – Successful integration

✓ Safe
 – Operations conducted safely

✓ Accurate
 – RS gas content matched core gas content

✓ Cost effective
 – Potential to eliminate HQ gas content core hole
 – Increase available hole for gas content testing
Conclusions

✔ Field proven
 - Successful integration

✔ Safe
 - Operations conducted safely

✔ Accurate
 - RS gas content matched core gas content

✔ Cost effective
 - Potential to eliminate HQ gas content core hole
 - Increase available hole for gas content testing

✔ Immediate Results
 - Results available while testing
References

Concurrent *In Situ* Measurement for Measuring Permeability, Gas Content and Saturation, Quentin Morgan, John Pope and Peter Ramsay, 2014 Coal Operators Conference, The University of Wollongong
2014 Gas and Coal Outburst Seminar

Concurrent *In-situ* Measurement of Flow Capacity & Gas Content